2019 Bott Lectures

On April 9 and 10, 2019 the CMSA hosted two lectures by Mina Aganagic (UC Berkeley). This was the second annual Math Science Lecture Series held in honor of Raoul Bott.

“Two math lessons from string theory”

Lecture 1:  “Lesson on Integrability”


Abstract: The quantum Knizhnik-Zamolodchikov (qKZ) equation is a difference generalization of the famous Knizhnik-Zamolodchikov (KZ) equation. The problem to explicitly capture the monodromy of the qKZ equation has been open for over 25 years. I will describe the solution to this problem, discovered jointly with Andrei Okounkov. The solution comes from the geometry of Nakajima quiver varieties and has a string theory origin.

Part of the interest in the qKZ monodromy problem is that its solution leads to integrable lattice models, in parallel to how monodromy matrices of the KZ equation lead to knot invariants. Thus, our solution of the problem leads to a new, geometric approach, to integrable lattice models. There are two other approaches to integrable lattice models, due to Nekrasov and Shatashvili and to Costello, Witten and Yamazaki. I’ll describe joint work with Nikita Nekrasov which explains how string theory unifies the three approaches to integrable lattice models.

Lecture 2: “Lesson on Knot Categorification”


Abstract: An old problem is to find a unified approach to the knot categorification problem. The new string theory perspective on the qKZ equation I described in the first talk can be used to derive two geometric approaches to the problem.The first approach is based on a category of B-type branes on resolutions of slices in affine Grassmannians. The second is based on a category of A-branes in a Landau-Ginzburg theory. The relation between them is two dimensional (equivariant) mirror symmetry. String theory also predicts that a third approach to categorification, based on counting solutions to five dimensional Haydys-Witten equations, is equivalent to the first two.This talk is mostly based on joint work with Andrei Okounkov.

Information about last year’s Math Science Bott lecture can be found here. 

Existence and Uniqueness of Stationary Solutions in 5-Dimensional Minimal Supergravity

New paper by Aghil Alaee et. al.:

Title: Existence and Uniqueness of Stationary Solutions in 5-Dimensional Minimal Supergravity

Abstract: We study the problem of stationary bi-axially symmetric solutions of the 5-dimensional minimal supergravity equations. Essentially all possible solutions with nondegenerate horizons are produced, having the allowed horizon cross-sectional topologies of the sphere S3, ring S1×S2, and lens L(p,q), as well as the three different types of asymptotics. The solutions are smooth apart from possible conical singularities at the fixed point sets of the axial symmetry. This analysis also includes the solutions known as solitons in which horizons are not present but are rather replaced by nontrivial topology called bubbles which are sustained by dipole fluxes. Uniqueness results are also presented which show that the solutions are completely determined by their angular momenta, electric and dipole charges, and rod structure which fixes the topology. Consequently we are able to identify the finite number of parameters that govern a solution. In addition, a generalization of these results is given where the spacetime is allowed to have orbifold singularities.

Quantum Yang-Mills 4d Theory and Time-Reversal Symmetric 5d Higher-Gauge TQFT: Anyonic-String/Brane Braiding Statistics to Topological Link Invariants

New Publication from Zheyan Wan, Juven Wang, Yunqin Zheng:

Title: Quantum Yang-Mills 4d Theory and Time-Reversal Symmetric 5d Higher-Gauge TQFT: Anyonic-String/Brane Braiding Statistics to Topological Link Invariants

Abstract:  We explore various 4d Yang-Mills gauge theories (YM) living as boundary conditions of 5d gapped short/long-range entangled (SRE/LRE) topological states. Specifically, we explore 4d time-reversal symmetric pure YM of an SU(2) gauge group with a second-Chern-class topological term at θ=π (SU(2)θ=π YM). Its higher ‘t Hooft anomalies of generalized global symmetries indicate that the 4d SU(2)θ=π YM, in order to realize all global symmetries locally, necessarily couples to a 5d higher symmetry-protected topological state (SPTs, as an invertible TQFT, or as a 5d 1-form-center-symmetry-protected interacting “topological superconductor” in condensed matter). We revisit the 4d SU(2)θ=π YM-5d SRE-higher-SPTs coupled systems in [arXiv:1812.11968] and find their “Fantastic Four Siblings” with four sets of new higher anomalies associated with the Kramers singlet/doublet and bosonic/fermionic properties of Wilson lines. Following Weyl’s gauge principle, by dynamically gauging the 1-form center symmetry, we transform a 5d bulk SRE SPTs into an LRE symmetry-enriched topologically ordered state (SETs); thus we obtain the 4d SO(3)θ=π YM-5d LRE-higher-SETs coupled system with dynamical higher-form gauge fields. Apply the tool introduced in [arXiv:1612.09298], we derive new exotic anyonic statistics of extended objects such as 2-worldsheet of strings and 3-worldvolume of branes, which physically characterize the 5d SETs. We discover new triple and quadruple link invariants potentially associated with the underlying 5d higher-gauge TQFTs, hinting a new intrinsic relation between non-supersymmetric 4d pure YM and topological links in 5d. We provide lattice simplicial complex regularizations and “condensed