Quantum Yang-Mills 4d Theory and Time-Reversal Symmetric 5d Higher-Gauge TQFT: Anyonic-String/Brane Braiding Statistics to Topological Link Invariants

New Publication from Zheyan Wan, Juven Wang, Yunqin Zheng:

Title: Quantum Yang-Mills 4d Theory and Time-Reversal Symmetric 5d Higher-Gauge TQFT: Anyonic-String/Brane Braiding Statistics to Topological Link Invariants

.
Abstract:  We explore various 4d Yang-Mills gauge theories (YM) living as boundary conditions of 5d gapped short/long-range entangled (SRE/LRE) topological states. Specifically, we explore 4d time-reversal symmetric pure YM of an SU(2) gauge group with a second-Chern-class topological term at θ=π (SU(2)θ=π YM). Its higher ‘t Hooft anomalies of generalized global symmetries indicate that the 4d SU(2)θ=π YM, in order to realize all global symmetries locally, necessarily couples to a 5d higher symmetry-protected topological state (SPTs, as an invertible TQFT, or as a 5d 1-form-center-symmetry-protected interacting “topological superconductor” in condensed matter). We revisit the 4d SU(2)θ=π YM-5d SRE-higher-SPTs coupled systems in [arXiv:1812.11968] and find their “Fantastic Four Siblings” with four sets of new higher anomalies associated with the Kramers singlet/doublet and bosonic/fermionic properties of Wilson lines. Following Weyl’s gauge principle, by dynamically gauging the 1-form center symmetry, we transform a 5d bulk SRE SPTs into an LRE symmetry-enriched topologically ordered state (SETs); thus we obtain the 4d SO(3)θ=π YM-5d LRE-higher-SETs coupled system with dynamical higher-form gauge fields. Apply the tool introduced in [arXiv:1612.09298], we derive new exotic anyonic statistics of extended objects such as 2-worldsheet of strings and 3-worldvolume of branes, which physically characterize the 5d SETs. We discover new triple and quadruple link invariants potentially associated with the underlying 5d higher-gauge TQFTs, hinting a new intrinsic relation between non-supersymmetric 4d pure YM and topological links in 5d. We provide lattice simplicial complex regularizations and “condensed

arXiv:1904.00994